مجلة وادي النيل للدراسات والبحوث الأكاديمية والاجتماعية والتربوية

نتاج بيانات الكتل العمرانية بواسطة صور الأقمار الصناعية ذات الدقة المكانية العالية باستخدام نظام المعلومات الجغرافية والتعلم العميق

م. عمر عبد الروؤف مخذوم
د. مفرح بن ضايم القرادي
د. هيلك هيشري

المتخص: 1. موضوع الدراسة:

يقدم البحث تحليلًا كمياً لاستخراج طبقة الكتل العمرانية باستخدام أحد التكنيات الحديثة من خلال برامج نظم المعلومات الجغرافية GIS عن طريق النمذجة مجموعة من الإجراءات باستخدام تقنية الذكاء الاصطناعي في استخراج بيانات طبقة المباني من صور الأقمار الصناعية ذات الدقة العالية ونماذج التعلم العميق.

2. أهداف الدراسة:

تهدف الدراسة إلى محاولة الوصول إلى استخدام نظام متكامل باستخدام تقنية الذكاء الاصطناعي وخوارزميات التعلم العميق بالاعتماد على تقنيات نظم المعلومات الجغرافية لاستخراج طبقة المباني والكتلة العمرانية من خلال معالجة

بحث مشتق من بحث الطالب عمر عبد الروؤف مخذوم مقدماً استكمالاً لمطالب الحصول على درجة الدكتوراه في تخصص علم الخرائط، قسم الجغرافيا بكلية الآداب-جامعة الملك سعود.

(1) مدير إدارة المعلومات الجيوبكنائية وخدمات تحديد المواقع - الهيئة السودية للسياحة
(2) رئيس قسم الجغرافيا بجامعة الملك سعود
(3) استاذ دكتور بقسم هندسة الحاسب، جامعة الملك سعود

[385]
الصور الفضائية عالية الدقة في محاولة لتطوير أحد النظم الكاريكاتيرية والتي يمكن استخدامها في انتاج الخرائط الموضوعية للمدن.

3. منهجية الدراسة:

تعتمد منهجية هذه الدراسة على عدة خطوات عملية متسلسلة ومتزامنة تبدأ في الحصول على مدخلات النظام الأول: الحصول على المربعات الفضائية لمنطقة الدراسة بدقة مكانية عالية مع إجراء بعض المعالجات الأولية للمرئيات الفضائية، ثم: اختيار نموذج التحليل واستخراج طبقة المباني ثالثاً: استخدام نموذج Extracting Building Footprints- KSA استخراج طبقة المباني من شركة Esri والذي يستخدم في تدريب مايقارب 200 صورة من مختلف مناطق المملكة العربية السعودية ذات دقة تصل إلى 30 س. رابعاً: معالجة النتائج المستخرجة من النظام خامساً: قياس دقة النتائج

4. بيانات الدراسة:

اعتمدت هذه الدراسة على الصور الفضائية عالية الدقة بدقة 30 سم لمنطقة Digital Globe المقدمة من شركة KSA.

5. نتائج الدراسة:

توجهت الدراسة إلى عدد من النتائج والتي يمكن تقسيمها كما يلي:

أ- نتائج ذات صلة بالمنهجية والنموذج المستخدم:

* أظهرت الدراسة أن إنتاج بيانات الكتل العمرانية بواسطة صور الأقمار الصناعية ذات الدقة المكانية عالية باستخدام نظام المعلومات الجغرافية والتعلم العميق بدأ بتحديد المدخلات والتأكد من الدقة المعيارية لكل مدخل بدء من اختيار الصور الفضائية ومتى ملاءمتها للنموذج المستخدم مما يقلل الوقت والجهد المطلوب بشكل كبير.

ب- نتائج ذات صلة بمخرجات النموذج:

* أظهرت الدراسة أهمية معالجة المخرجات فيما بعد ومنها معالجة حواف المبنى Regularize building footprints والتي تؤثر في حساب دقة الشكل والمساحة بالمقارنة بالرسم اليدوي.
أظهرت النتائج تأثير النمط العمراني المنتظم غير المنتظم على دقة النموذج في استخراج طبقة المباني في منطقة الدراسة بمقارنة لإجمالي العدد الحقيقي المتوقع حيث بلغت ٨٤.٨٠% بحي الزهور بينما بلغت ١١.٨٣% بحي الدير.

تم تطبيق نسبة التشابه بمقدار ٣٠% وتم الحصول على نتائج ذات دقة أعلى لحين الزهور والدير حيث وصلت دقتها ما يقارب ٨٣% إلى ٩٠%.

تم اختيار منطقتين أخرى للتأكد من نتائج دقة النموذج وهي حي حطين في مدينة الرياض وحي النهضة في مدينة جدة.

وصلت دقة النتائج أيضاً من ٨٥% إلى ٩٤% حيث تم التأكد من هذه النتائج بعد حساب كلا من Precision, Recall و تطبيق لغة البيانات على نتائج المخرجات من خلال صور الكتل العمرانية.

6. الخاتمة:

قدمت الدراسة عرضاً تفصيلاً عن أساليب استخراج طبقة المباني والكتل العمرانية من الصور الفضائية عالية الدقة من خلال استخدام تقنيات الذكاء الاصطناعي والتعلم العميق بنظام المعلومات الجغرافية حيث Deep learning HEAD稱 عرض مجموعة من الخوارزميات والتي تعد الأساس التقني لتعليم الآلة وذلك من حيث آليه العمل ودقة النتائج.

7. الكلمات الدالة:

- الذكاء الاصطناعي (Artificial Intelligence)
- Machine Learning
- التعلم العميق (Deep Learning)
- Building Footprints
- GIS
- تعلم الآلة (Algorithms)
Abstract:

1. Study subject:
 The research presents a quantitative analysis of extracting the building footprints layer using one of the modern techniques through GIS software by modeling a set of procedures using artificial intelligence technology in extracting building layer data from high-resolution satellite images and deep learning models.

2. Objectives of the study:
 The study aims to reach the use of an integrated system using artificial intelligence technology and deep learning algorithms based on geographic information systems techniques to extract automated layer of buildings footprints by processing high-resolution satellite images in an attempt to develop one of the cartographic systems that can be used in producing thematic urban maps.

3. Study methodology:
 The methodology of this study depends on several sequential and interrelated practical steps that start with obtaining the inputs of the system. First: Obtaining the satellite visuals of the study area with high spatial accuracy, with some preliminary manipulations of the satellite visualization. Second: Choosing the analysis model and extracting the buildings layer. Third: Using the building footprints layer extraction model. Fourth: Processing the results extracted from the system. Fifth: Measuring the accuracy of the results.

4. Study datasets:
 This study relied on high-resolution satellite images with a resolution of 30 cm for the study area provided by Digital Globe Co.

5. Results
 The study reached a number of results, which can be divided as follows:
 A- Results related to the methodology and model used:
 The study showed that how producing building footprints data can be done by satellite images with high resolution using geographic information systems and deep learning begins with
defining the inputs and ensuring the standard accuracy of each input, starting from the selection of satellite images and their compatibility of the model that it used, which greatly reduces the time and effort required.

B- Results related to the outputs of the model:

- The study showed the importance of processing the outputs later, including generalizing building footprints, which affect the calculation of the accuracy of shape and area compared to manual digitizing.

- The results showed the effect of the regular and irregular building footprints pattern on the accuracy of the model in extracting the layer of buildings in the study area compared to the total expected real number, which reached **47.80%** in Al-Zahoor district, while it reached **11.63%** in Al-Dirah district.

- A similarity rate of 30% (Threshold) was applied, and results with higher accuracy were obtained, while Al-Zahoor and Dirah reached an accuracy of approximately 80% to 90%.

- Two other areas were chosen to verify the results of the model’s accuracy, which are the Hattin District in Riyadh and the Al-Nahda District in Jeddah.

- The accuracy of the results also reached from **85%** to **94%**, as these results were confirmed after calculating Accuracy, Dice, F1-score, Index, IoU, Precision, and Recall, by applying the Python script to the output results through images of buildings footprint.

6. **Conclusion:**

The study provided a detailed presentation on the methods of extracting the building footprints layer from high-resolution satellite images through the use of artificial intelligence and deep learning techniques in geographic information systems, where a set of algorithms were presented, which are the technical basis for machine learning, in terms of the mechanism of work and the accuracy of the results.

7. **Keywords:**

Artificial Intelligence, Machine Learning, Deep Learning, building footprints Extraction, GIS.
المقدمة

تكتن أهمية نظم المعلومات الجغرافية (GIS) في استخدامها كأداة تحليلية وتكنولوجيا ذات فعالية سواء للمخططيين أو متدخلي القرار وكذلك المسئولين عن التنفيذ الميداني للقرار، وما يساعد في الحد من التكلفة المادية وتحقيق سرعة ومؤنثية لمواجهة المشكلات الحالية أو المتوقعة وأبعادها الجغرافية، وقد ساعد التقدم المهالي في برامج وأدوات نظم المعلومات الجغرافية في جمع المعلومات المكانية وتخزينها وتحليلها واستخراج النتائج لتقديم أفضل القرارات، من ناحية أخرى يمكن استخدامها في وضع النماذج الرياضية والكمية لدراسة الأوضاع الراهنة، وكذلك الرؤية المستقبلية.

في الأونة الأخيرة ظهرت العديد من التقنيات الحديثة والتي يمكن دمجها في دراسات نظم المعلومات الجغرافية من أهم ما يُعرف بالذكاء الاصطناعي والذي يعمل على تعزيز دور أجهزة الكمبيوتر Artificial Intelligence والبرمجيات لمحاكاة قدرات العقل البشري في حل المشكلات وإتخاذ القرارات، ولاسيما التحليلات المكانية وهو ما يُعرف بذكاء الموقع لإدارة وتنظيم المعلومات المكانية، حيث تنطبق البيانات في نظم المعلومات الجغرافية بالتنسيق المنطقي والرياضي "الخوارزمي" بمعنى أن الجغرافيا تستثمر الذكاء الاصطناعي لحل ومعالجة البيانات المكانية من مصادرها المتعددة ولاسيما من الصور الفضائية والجوية علامة الدقة المكانية وتمثيلها على الخرائط لإعطاء صانع القرار تفاصيل

(1) تتكون نظم المعلومات الجغرافية GIS من مجموعة من البرمجيات المختلفة والتي منها Commercial software والبرمجيات التجارية Open source المجانية، أما من حيث ENVI Erdas الوظيفة فهي المناخ المتخصص في تحليل الصور الجوية والفضائية مثل Digitizing ونها ما يتم خلاف التحليل الرقمي Imagine Global mapper أكثر Autodesk مثل مجموعات برامج نظم المعلومات الجغرافية الأشهر فهي منتجات شركة ESRI والتي تجمع بين معظم خصائص برامج نظم المعلومات الجغرافية المختلفة.

390
تحديد بيانات الكتل العمرانية بواسطة صور الأقمار الصناعية ذات الدقة المكانية العالية باستخدام نظم المعلومات الجغرافية والتعمق العميق
م. عمر عبد الروؤف مختار
د. مفرح بن ضامير القرادي
د. هلال هيشري

したもの وادي النيل للدراسات والبحوث الإنسانية والاجتماعية والترفيهية

تعتمد على استدارات استراتيجية في الذكاء الاصطناعي (AI)، باستخدام بيانات الموقع كوسيلة ربط لآمنة العمليات وإدارة المدن (Esri، 2021).
وقبل البدء في مجموعة حلول باستخدام الذكاء الاصطناعي يجب تحقيق الأسس التقنية لنظم المعلومات الجغرافية 'GIS' التي لها من القدرات والإمكانيات في استخدام النمذجة والنموذج الافتراضي والتعامل مع جميع المتغيرات ‘Variables’، وتطوير إطار عام يمثل اداة لدعم القرارات المكانية (الزاملز وعبد الحميد، "Spatial Decision Support Systems (SDSS)"، نوفمبر 2002) بما يدعم الهدف المطلوب من استخدام أو تطوير النظام. ومع تنوع مصادر أنواع البيانات المكانية ومنها الصور الفضائية عالية الدقة يمكن استخدام وسائل التعلم العميق والذكاء الاصطناعي الكمي في استخدام أو تطوير نموذج يمكن أن تحصل من خلاله على بيانات طبقة المبني مكونة Footprints والتي سوف تعتمد على تطبيق خوارزميات رياضية محددة الخطوات وتطويرها إذا لم الأمر وفق منهجية واضحة تقوم في النهاية برصد وإنتاج البيانات الجيوكاميرا بشكل سهل وبسيط يسهل ويقلل من التدخل البشري بشكل مباشر في خطوات إنتاج البيانات.

1. منطقة الدراسة.
 - الحدود الموضوعية: تقتصر الدراسة في استخدام نموذج لاستخراج طبقة المباني من الصور الفضائية عالية الدقة.
 - الحدود المكانية: تقع الحدود المكانية في المنطقة الشرقية بمدينة الدمام ضمن نطاق حي الدير وحري الزهور (شكل 1)، والتي تقدر مساحة حي الدير بنحو 1 كم². وتحدد مساحة حي الزهور بنحو 1.63 كم² وتم اختيار منطقتي الدراسة وفقاً للتنوع في

[391]
النسيج العمراني وتم تحديد منطقتين مختلفتين لاختيار مدى قدرة وملائمة النموذج في العمل على استخراج طبقة المباني والمقارنة فيما بينهما كذلك لقياس مدى إمكانية تطبيق تعديلات برمجية لتحسين الدقة المكانية للنموذج.

شكل ١
حي الديرة وحي الزهور الواقع في شمال مدينة الدمام بالمنطقة الشرقية.

٢. موضوع الدراسة وأهميته.
تتشهد المملكة العربية السعودية منذ العقود الماضية توسعا عمرانيا مع اهتمام المملكة بقياس مؤشرات الرصد الحضري والتخطيط الحضري الإقليمي وابنها، وبالتزامن مع هذا التطور السريع للكتلة العمرانية فقد أفرزت تجارب عديدة وخبرات ومشكلات مترامية يجب فحصها وتحليلها والاستفادة من نتائجها على المستوى المحلي والإقليمي ومنها دارسة حالة التوازن من عدمه بين المتغيرات العمرانية والتأملية والخدمية.

ويمكن الوصول إلى تحقيق تلك الأهداف عند الأخذ بمنهج التحليل الكمي في استخراج طبقة الكتلة العمرانية باستخدام أحد التقنيات الحديثة من خلال برامج GIS لتنسيق المعلومات الجغرافية عن طريق تدفّع مجموعة من الإجراءات باستعمال تقنية الذكاء الاصطناعي في استخراج بيانات طبقة المباني.
العنصر التالي:

Building Footprints

- معالجة التحديثات لإنتاج بيانات حدود المباني
- الكتل العمرانية بصورة أليفة ودقيقة.

- يمثل الابتكار أحد الوسائل المستخدمة التي يمكن استخدامها وتطبيقها في العديد من المجالات وخاصة مع صعوبة مواجهة وحوكمة البيانات في التحديث المستمر لقواعد البيانات الجيومكاني المختلفة.

- يمكن توظيف النظام ومخرجات البحث في وضع نظام للاستراتيجية التفصيلية وصور الأقمار الصناعية ذات دقة عالية ونموذج التعلم العميق لرصد تطور حركة الكتلة العمرانية خلال فترة زمنية.

- يمثل الابتكار أدأ محتمل يمكن تطويره لرصد حالات التغيرات من خلال استخراج طبقة المباني وربطها بطبقات قطع الأراضي.
- يمثل البحث وسيلة فعالة لتحديد اتجاهات وأمراض نمو منطقه الدراسة في الوقت الراهن والمستقبل مع الأخذ بشروط التخطيط وبالتالي يمكن رصد حالات التعديات.

- يمكن استخدام تقنية البحث في دراسة العلاقة بين المراقب والخدمات العامة بالنمو وانتشار الكتلة العمرانية لمنطقة الدراسة، وشبكة الطرق، وطبيعة الامداد المكاني.

- يمثل البحث وسيلة لدعم صناع القرار للمساعدة في التخطيط من خلال توفير البيانات المكاني لوضع برامج تنموية مستقبلية للامتثال المكاني وتحديد العوامل الجغرافية التي تساهم في التوزن من عدده بين المغيرين (الكتلة العمرانية، والمساحة)، مع رصد نسبة التغير ما بين فترات زمنية مختلفة وتحديد خرائط التوزيع العمراني على مدى سنوات مختلفة.

- يمكن البحث من دعم المكتبة العربية بأبحاث علمية تطبيقية في مجال التقنيات الجيوبكنانية والتعليم العمق في استخلاص الكتلة العمرانية.

2. دراسات سابقة

مجموعة من الدراسات التي تناولها الباحثون في مجال انتاج خرائط لحدود المجال المباني المختلفة. وثوابت هذا المجال حديث وحتاج إلى مزيد من الأبحاث والدراسات بسبب قلة المختصين واختلاف وتنوع التقنيات الجديدة المستخدمة، فيما يلي مجموعة من الدراسات والأبحاث المحلية والدولية ذات الصلة.

قدم هيبك وأخرون (Heipke، Alrajhi، Maas، Alobeid) (٢٠١٧) تصور عن تحديد قواعد البيانات الجغرافية المكانية بناءً على بيانات الاستشعار والصور الفضائية 3D عن بعد واستخراج ملف معلومات نظم معلومات جغرافية، حيث استخدمت الدراسة مجموعتان من ثلاثة أقصر صناعية لمنطقة الدراسة في الرياض في المملكة العربية السعودية: تتمثل في صورتين متر ترسيب مجسمة وصورة من الامكانية الحساب نموذج السطح الرقمي (DSM) بالجودة GeoEye 0.5 متر و10 متر، وتم إنشاء صور التخريج والتصحيح، رصد إيات ونعاز (٤٩٣) ٣٩٤
خوارزمية مطابقة الصور عن طريق التصنيف المورفولوجي لانشقت نموذج التضاريس الرقمية (DTM) وأخيرا نموذج السطح الرقمي غير المطابق (nDSM) (الذي يحتوي فقط على ارتفاعات المبنى بدون تأثير التضاريس: DTM - nDSM) لمنطقة GeoEye استريو المجمدة.

وقد خلصت النتائج إلى ضرورة التحقق مع عاليا الألوان الثلاثة (الأحمر والأخضر والأزرق) جنبًا إلى جنب مع الكثافة الدقيقة للدوران وارتفاعات الدقة أيضا في نتائجها لأهمية تفعيل مسارات الارتفاع والتي تؤدي إلى تعريف nDSM الدقة الكلية حوالي 5% عندما تكون معلومات الارتفاع في شكل قيم مشتقة من مطابقة الصورة الحديثة وحصيلة عند استخدام المباني الجديدة.

عرضت فاتن حامد ونحاس وآخرون (Zulhaidi وNahhas، 2018، Hamed، Shafri) في ورقة بحثية استخدام منهج التعلم العميق للكشف عن البيانات من خلال نظام orthophotos وLiDAR، القدرة على اكتشاف الضوء وتحديد المدى في الحصول على بيانات الارتفاع، والواقعية للاكتشاف عن البيانات LiDAR عاليا الدقة، ولكن ذلك لفترته على جمع بيانات نقطة عالية الكثافة في وقت قصير يمكنها ودقة رأسية عالية وتكلفة منخفضة ومع ذلك، فإن الاستخدام الدقيق للمباني في المناطق الحضرية ذات الكثافة العشوائية بعيد مكاية صعبة نظرًا لوجود أشياء قردية، مثل الأشجار، والتي غالبًا ما يكون لها نفس ارتفاعات المباني، لذلك يمكن أن يكون اندماج الارتداد الدقيق من الصور الجوية خطوة مهمة نحو تحسين جودة اكتشاف المباني، وقد عرضت الدراسة للعديد من الطرق والنمذج لاستخدام طاقة المباني باستخدام بيانات LiDAR ودمجها مع بيانات الاستشعار عن بعد الأخرى لتحسين الدقة.
والوجهة من خلال عدد من الخوارزميات الجديدة لاكتشاف حدود المباني من
اندماج LiDAR والصور عالية الدقة.
تشير النتائج إلى أن اندماج LiDAR والصور عالية الدقة هو نهج واعد
للكشف الدقيق عن حدود المباني (الدقة = 98% والاحتمال = 95%) وتضمن تلك
الطريقة أربع خطوات: الترشيح، واكتشاف المبنى، وإزالة نقطة الجدار، واكتشاف
السقف ويمكن أن تستخرج تلقائيًا المباني ذات الأشكال المعقدة. وكذلك تم تطوير
طريقة آلية للكشف عن المباني بناءً على بيانات LiDAR والصور الجوية.
وتتضمن هذه الطريقة التجزئة والتصنيف باستخدام تحليل الصورة القائم على
الكائن. يُظهر تقييم الدقة إجمالية تقارب 93.5%، وكمية
2.79% لاستخراج المباني.
تناول جوش وآخرون (2018، Gosh و Gavankar) المباني المباني - K-
وخارزميات - Top- Hat بواسطة نموذج building footprints المستطيلة ذات الأسفل المصطبة باستخدام قيود هندسية وإسقاطية من صورة
الدقة 0.60 م. عرضت الدراسة للعديد من التقنيات لاستخراج المباني من صور
الأقمار الصناعية حيث تم اقتراح مجموعة واسعة من التقنيات الآلية وشبه الآلية
ومن هذه التقنيات تقنية قائمة على اكتشاف الحواف للكشف عن المباني
متوسطة ذات الأسطح السطحية باستخدام قيود هندسية وإسقاطية من صورة
أحادية الكثافة، وتضمن تقنية على كشف الحواف لاستخراج المباني الكبيرة من
من الصور البانورامية التي لها دليل ظل. ومع ذلك لم
تنجح تلك التقنية في استخراج المباني الصغيرة ذات الظل القليل أو بدون ظل.
وقد استخدمت الدراسة خوارزمية (Itk)
وهي تعني خوارزمية التجميع وتصنيف
K centroids المجموعة معينة من البيانات في عدد K من المجموعات في مرحلتين متصلتين.
وفي المرحلة الثانية، تقسم كل K centroids خليفة من الصورة إلى أقرب النقطة الوسطى من الخلية ذات القيم، حيث
= 1، 2، ...، n هي قيمة محددة من قبل المستخدم تشير إلى الرقم من الفئات
المحددة مسبقًا.
وتوصلت الدراسة إلى أن المباني ذات الأسطح السطحية والمظلية للغاية قد تم استخراجها بنجاح ومع ذلك، فقد تم التخلص من عدد قليل من أسطح المباني التي تكشف عن قيمة انكساس مماثلة للكثير من المباني المحيطة الأخرى في الصورة أثناء إجراء إزالة الأشياء المصنفة بشكل خاطئ. وبالتالي، تم تصنيف عدد قليل من الميزات غير الإنشائية في فئة المبنى نظرا لقيمة الانكساس والخصائص الهيكلية المماثلة لل陔 الموجودة في المباني الحقيقة. كانت الدقة الكلية لتقنيات التقييم القائم على الكائن من حيث الانتشار والصحة والجودة 0.90 و0.83 و0.91 و0.89 و0.82 و0.87 مناطق سانتا آنا ونابولو، على التوالي. ومع ذلك، فإن الدقة الإجمالية لتقنية التقييم المعتمد على البكل من حيث الانتشار والصحة والجودة كانت 0.86 و0.89 و0.78 و0.82 و0.87 و0.74 لمناطق سانتا آنا ونابولو، على التوالي يمكن استخدام المنهجية المقترحة بشكل أكبر في العديد من التطبيقات، مثل تقدير الضرر من خلال تحديد المباني التالفة وغير التالفة وحساب كثافة المباني في المنطقة.

تم تصميم العديد من الاستراتيجيات ودمجها باستخدام نموذج التجزئة الداللي U-Net المستند إلى U-Net، بما في ذلك زيادة البيانات والمعالجة اللاحقة، وتكامل بيانات خرائط نظم المعلومات الجغرافية وصور الأفمات الصناعية. الطريقة المفترضة تحقق المجموع F1 = 0.704 0.00، وهو تحسن بنسبة 0.1% إلى 12.0% مقارنة بالحلول الأخرى.
قدمت دراسة لمياء إبراهيم ورانيا طه (2021) منهجية تحليلية في حقول البيانات المرتبطة بمشتريات الأ (£)، اتهمت بالتعقيد في قواعد البيانات الجغرافية والبرمجية الحياتية، تناولت دراسة عمر عبد الرحمن، كاتبي بلو، تارني ليو (2021)، استخدم تكنولوجيا UAS واستخدام أنظمة الطائرات الهوائية، حيث اكتسبت العديد من خطوات التحليل من خلال DCNN. يشمل استخدام ISRI ArcGIS Pro، أحد أكثر تطبيقات برامج GIS الاستخدام في العالم. يتم استخدام ArcGIS في الأونة الأخيرة حيث تتطابق العديد من خطوات التحليل، وتعرض الرؤية في تطبيقات مختلفة لتحليل الصور. ويرجع ذلك أساسا إلى قدرتها على التحليل الدالالة (التصنيف) واستخدام DCNN. يمثل الصورة دون تدخل بشري، أحد العوامل الرئيسية التي تجعل تطبيقات CNNs على نطاق أوسع هو الحاجة إلى حسابية محددة ومهارات فنية لاقتصاد التشغيل ليست شائعة بين مديري المشاريع العلمية والعملية الزراعية.

قدمت دراسة إيفان زاو وفلوبير بيبرس أو غير آخر (2021) عرضا لمجموعة من الأساليب لاستخدام طاقة المبينات، بما في ذلك تطبيقها في تحليل البيانات المبنية باستعمال التأثيرات، متنوعة بالأعمال، تصنيف التعلم الآلي التلقائي (على سبيل المثال، آلات التدريب) وتطوير طرق CNNs الفائضة عشوائية، شبكات العصبية التلقائية كجزء من دالة التفاعلية، تを使用 في هذا البحث، تجربة عناصر مختلفة لاستخدام المبينات.

4. أهداف الدراسة.

ما سبق يمكن تحديد أهداف الدراسة في النقاط التالية:

1. استخدام خوارزميات التعلم العميق لاستخلاص الكائن العضوي.
۲. تقييم دقة نموذج التعليم العميق في إمكانية استخلاص الكتل العمرانية لمنطقة الدراسة.
۳. انتاج بيانات الكتل العمرانية بواسطة خوارزميات التعليم العميق.
۵. منهجية الدراسة.

تعتمد الدراسة على المنهج التجريبي في انتاج بيانات الكتل العمرانية بواسطة صور الأفقار الصناعية ذات الدقة العالمية باستخدام نظم المعلومات الجغرافية والتعلم العميق، بالإضافة إلى استخدام عناصر مرجعية من شركة أزي العالمية لتطبيقات نظم المعلومات الجغرافية كما يوضح الشكل رقم (۲).

- البيانات المستخدمة:

- الحصول على المرئيات الفضائية لمنطقة الدراسة بدقة مكانية عالية مع مع
- ضرورة التأكد من المواصفات الفنية الأولية خلال المرحلة الأولى من الدراسة
- وقبل البدء بمرحلة استخدام النموذج سيتم استخدام مصطلح البيانات Data ودالة للبيانات الخامل قبل مرحلة التحليل واستخلاص المعلومات
- مرحلة التحليل والنتائج.
مرحلة ما قبل التحليل:

- وهي من أهم المراحل التي تسبق استخدام أدوات نموذج استخراج طبقة المباني، وتتعلق تلك المرحلة التأكد من التصحيح الهندسي للصور الفضائية والتتأكد من صحتها ودقتها لأن دقة المدخلات تعني دقة المخرجات من النتائج والتحليلات، وهنا يجب التحقق من عنصرين قبل مرحلة التحليل:

 • قياس الدقة الأفقية: وهي تعني التأكد من الدقة بالنسبة للشبكة الأفقية والتي تشمل خطوط الطول ودوائر الارض والتتأكد من عدم وجود تشويه في المسافات والمساحات.

 • التأكد من نظام الإسقاط المستخدم في الضبط الجيوديسي Projections لطبيعة سطح الأرض واستخدام المسطق المناسب لإجراء الدراسة أما عن وحدات القياس المستخدمة به فهي الوحدات دولة.

- اختيار نموذج التحليل واستخراج طبقة المباني:

استخدام النمذجة والمحاكاة من خلال برنامج Modeling and Simulation باستخدام نظم المعلومات الجغرافية GIS الأشهر من منتجات شركة ESRI مؤسسة Esri لتطلب نظم المعلومات الجغرافية لتطوير نموذج لاستخراج Esri تطبيق Building Footprints لاستخراج طبقة المباني والمتواجد مع الأنماط العمرانية بالمملكة العربية السعودية حيث تم بناء النموذج في ۱۴۰۲-۰۱-۰۵ وتم تحديثه في ۱۴۰۲-۰۸-۲۲ وعمل النموذج كشف الكائنات Detect Objects Using Deep Learning (Image Analyst)

يدعم النموذج تحليل الصور وفق مواصفات معينة حتى يمكن العمل عليها والصور المدعومة من النموذج لابد أن تتميز بدقة من (0.1-0.5 سم) أو Esri world imagery الصور المدعومة من أبرز Esri الصور بشكل جيد في المناطق غير العشوائية في المملكة العربية السعودية ويحقق النموذج مقاييس الدقة يبلغ متوسط درجة الدقة في النموذج ۱۴.۹۱٪
تناغم بيانات الكتل العمرانية بواسطة صور الأقمار الصناعية ذات الدقة المكانية العالية باستخدام نظم المعلومات الجغرافية والتعلم العميق

م. عمر عبد الرؤوف مخدوم
م. مفرح بن ضايم القرادي
د. هيلين هيشري

مجلة وادي النيل للدراسات والبحوث الإنسانية والاجتماعية والتربوية

وتعني م. ع. ب. عبد الرؤوف مخدوم، وهو رقم يحدد درجة التداخل بين المباني المتجاورة في حالة اكتشاف الكائنات وتجزئتها، تقوم U بنقاط التداخل في الصور الفضائية والنسبة المستخرجة.

اختيار البرنامج والأدوات:

تتوفر إمكانات التعلم العميق في ArcGIS Pro في خلال العديد من الأدوات والإمكانات تم الاعتماد على النسخة الجديدة هيئة تدعم Deep Learning في استخدام نموذج التعلم العميق Arc Pro2.8، نسخة استدامة مكتبات ونماذج التعلم العميق والذكاء الاصطناعي Object Prediction كشف الأنماط، كشف الكائنات من الصور، كشف الكائنات لدى نسبيه الاختراق، يساعد على فهم الصور الفضائية.

Building_footprint_KSA.dlpk

العمل على النموذج من خلال قائمة تحليل Arc pro يعتمد على التصنيف وتصنيف النموذج وربطها ببرنامج الصور.

Using Deep Learning

رسمية توضيحية

أداة استخلاص الكتل العمرانية بواسطة التعلم العميق في برنامج ArcGIS Pro
من خلال قائمة Detect Object Using Deep Learning التالية:

- الصور الفضائية (قيمة مطلوبة)
- مكان الحفظ (اختيار)
- Building_footprint_KSA.dlpk
- تعريف نموذج
- استخراج النتائج

رسم توضيحي؟

إدخال عناصر العمل على تحليل الصور الفضائية
معالجة حواف المبنى: Regularize building footprints
- أدناه لتحسين المظهر المرئي لميزات أثر المبنى المستخرج، من خلال قائمة صندوق الأدوات.

رسم توضيحي 5 أدوات برنامج Arc Pro
إنتاج بيانات الكتل العمرانية بواسطة صور الأقمار الصناعية ذات الدقة المحايدة العليا باستخدام نظم المعلومات الجغرافية والتعلم العميق

م. عمر عبد الروؤف مخدوم
د. مفرح بن ضايم القرادي
د. هيثم هيشري

مجلة وادي النيل للدراسات والبحوث الإنسانية والاجتماعية والتربوية

رسم توضيحي ۱

أدوات برنامج Arc Pro لمعالجة حواف المباني

۶. النتائج والمناقشة

تم تطبيق البحث لاستخلاص طبقة المباني من الصور الفضائية من خلال أسلوب Object-Based Classification والذي يعرف بالتصنيف الهدف والذي تعد أحد أساليب تصنيف المرئيات الفضائية وأكثرها تطورا حيث أجريت العديد من الدراسات فيما يتعلق باستخلاص المباني من صور الأقمار الصناعية والذي يظهر العديد من المزايا الهامة مقارنة بطرق التصنيف الأخرى، إلا أنه مع ذلك لا يزال من غير الواضح ما إذا كانت هذه التكنولوجيا قادرة على استخلاص المباني بكفاءة عالية للبيئات الحضرية في المملكة العربية السعودية.
ويحي أن النموذج المستخدم في استخراج طبقة المباني والمصمم من شركة Faster R-CNN هو امتداد لـ R-CNN الذي يعمل النموذج على تتبع وتحديد حدود المبنى، من خلال تكوين قناع R-CNN من جزئين: الأول: البنية الأساسية التلافيفية المستخدمة لاستخراج العنصر الثاني: ملف رئيسي من الشبكة للتصنيف، والتعرف على المربع المحيط وقناة النتائج الذي يتم تطبيقه بشكل منفصل، تظهر المضلعات مخططة غير منتظمة بسبب Mask R-CNN الأولية التي تم إنتاجها بواسطة ميزات الخلايا والمستخرجات التي أجرها. وتحويل ملف Mask R-CNN. موقع وقيم الخلايا والمستخرجات التي تظهر المضلعات إلى مضلانات منتظمة، والتي يتم تدويلها من خلال عملية تسوية الحدود (Zhao، Kang، Jung، Sohn، 2018).

1. النتائج بمنطقة الدراسة: حي الزهراء

شكل (8) استخراج النتائج من خلال تطبيق Deep Learning نموذج التعلم العميق

شكل (7) رسم وحصر المباني من خلال الصور الفضائية
دقة استخراج المباني
- تم حصر 1094 مبنى بمنطقة حي الزهور من خلال التحويل الرقمي المباشر من الصور الفضائية.
- تم استخدام Deep Learning بتطبيق النموذج 523 مبنى
- نسبة دقة النموذج في استخراج طبقة المباني بالمقارنة لأجمالي العدد الحقيقي المتوقع بلغت 47.80%
- دقة شكل المباني: تم قياس دقة الشكل الخارجي للمبنى من خلال عناصر

![Diagram](image1)

شکل (10) تعديل حدود المباني المستخرجة

![Diagram](image2)

شکل (9) النتائج من خلال تطبيق نموذج التعليم العمق

![Diagram](image3)

شکل (11) رسم وحصر المباني من خلال الصور الفضائية

[End of text]
- دقة استخراج المباني
- تم حصر 885 مبنى ومنطقة حي الديرة من خلال التحليل الرقمي المباشر من الصور الفضائية.
- تم استخدام Deep Learning
- نسبة دقة النموذج في استخراج الطبقات المباني بالمقارنة لأجمال العدده الحقيقي المتوقع بلغت 11.13%.
- دقة شكل المباني: تم قياس دقة الشكل الخارجي للمبنى من خلال عنصر

- مقارنة حدود النتائج مع بيانات الرسم اليدوي بشكل آلي.
- حيث تم تحديد مساحة المضلع الي تم إنشاؤها في جدول ArcGIS Pro
- حيث يتم تحديد مساحة المضلع مع إنها في جدول Shape Area
- عبر مقارنتها بالمقالات المستخرجة من خلال الذكاء الاصطناعي من خلال تحديد مساحة التداخل بين الطبقتين أو أكثر من
- أداة Count Overlapping
- أداة Clip.
مجلة وادي النيل للدراسات والبحوث الإنسانية والاجتماعية والتروبية

حي الزهور:

(١٥) شكل

مقارنة النتائج من خلال نموذج التعلم العميق، والبيانات الرقمية، والبرنامج اليدوي Deep Learning.

- حي الزهور بعد عمليات التحليل اللون الأزرق للمنطقتين المباني من نموذج التعلم العميق والرم اليدوي.

(١٦) شكل

مقارنة المساحات من خلال نموذج التعلم العميق، والبيانات الرقمية، والرم اليدوي Deep Learning.
- عدد المضلعات المشابهة من نتائج الطرقتين هي 550 من أصل 1094

الدير:

(17) شكل

مقارنة النتائج من خلال نموذج التعلم العميق وميضات الرسم اليدوي Deep Learning

- حي الدير بعد عمليات التحليل اللون الأزرق يمثل المضلعات المرصودة

والمدشبات من طبقتين المباني من نموذج التعلم العميق والرسم اليدوي

(18) شكل

مقارنة المساحات من خلال نموذج التعلم العميق وميضات الرسم اليدوي Deep Learning

- عدد المضلعات المشابهة من نتائج الطرقتين هي 170 من أصل 885 حي الدير

{ 408 }
إنتاج بيانات الكتل العمرانية بواسطة صور الأقمار الصناعية ذات الدقة المكانية العالية باستخدام نظم المعلومات الجغرافية والتعلم العميق
م. عمر عبد الرؤوف مختار
ل. مفرح بن ضيام القرادي
د. هيلين هشري
مجلة وادي النيل للدراسات والبحوث الإنسانية والاجتماعية والتنموية

ومن خلال عمليات المقارنة بين النتائج السابقة والتي كانت دقتها سبعة نسبية بدقة لا تزيد عن 50% تم تطبيق طريقة جديدة من خلال التقليل في نسبة التشابه في عمليات رصد الكتل العمرانية حسب خصائص تدريب النموذج والتي كانت توصي باختيار نسبة تشابه تزيد عن 80% وهذا قد يكون السبب في عدم قدرة النموذج من رصد الكتل العمرانية بشكل دقيق. ولل.getM.م.ر تلتقي في نسبة

حيث تم اختيار القيمة 0.3 Threshold أو ما تعرف ب similarity
التشابه وهي القيمة التي تمثل نسبة التشابه فيما يقارب 30% من الكتل العمرانية حسب
مقارنة بما تم تدريبا من قبل. وعليه استطاع النموذج من رصد ما يقارب 1078
كتلة عمرانية لحي الزهور مقارنة بعدد الكتل العمرانية المرصودة بالرسم الرقمي
المباشر Digitizing المبكر ودعاها 1064 كتلة عمرانية. وذلك ارتفعت دقة النتائج من 74.8% إلى 80%. وللتأكد من دقة هذه النتائج تم تطبيق نفس
الخصائص إلى حي الديرة حيث بلغت دقة النتائج مايقارب 95% وهي نتيجة
 عالية مقارنة بالنتائج السابقة. حيث يعود اختلاف النتائج وفقها بين منطقتين
الدراسة إلى اختلاف الطبيعة العمرانية وذلك بسبب وجود مناطق عشوائية في حي
dيرة بالإضافة إلى وجود مساحات كبيرة قد تكون ارضي فضاء، مزارع، أو
مستودعات، وللتأكد من تلك النتائج كان لابد للباحث اختيار حي مناطق دراسية

اخرى في مدن مختلفة، وعليه تم اختيار حي حطين في مدينة الرياض وحي
النهضة في مدينة جدة وذلك للتأكد من صحة النتائج وتطبيقها في أكثر من مدينة
ذات طابع جغرافي وعمري مختلف. اثبت نتائج تطبيق النموذج في حي حطين
94% بنفس منهجية اختيار نسبة تطبيق الكتل العمرانية مع النموذج كما سبق
من قبل وهي 30%، وبعد تطبيق نفس المنهجية لحي النهضة في مدينة جدة تم
التوصل أن نسبة دقة النموذج وصلت إلى 94% وذلك بعد مقارنة النتائج

المقدمة
قدمت الدراسة عرضاً تفصيلاً عن أساليب استخراج طبقة المباني والكتل العمانية من الصور الفضائية عالية الدقة من خلال استخدام تقنيات الذكاء الاصطناعي والتعلم العميق حيث Deep learning بنظام المعلومات الجغرافية حيث تم عرض مجموعة من الخوارزميات والتي تعد الأساس التقني لتعليم الآلة وذلك من حيث آلية العمل ودقة النتائج.

واعتمدت الدراسة التطبيقية في انتاج بيانات الكتل العمانية بواسطة صور الأقمار الصناعية ذات الدقة العالية باستخدام نظام المعلومات الجغرافية والتعلم العميق على أحد النماذج المعتمدة من شركة آزي ت الحصول على نموذج لاستخراج طبقة المباني والمتواجد مع الأنماط العمانية بالمملكة العربية السعودية Building Footprint Extraction– KSA في يناير 2022 م وتتم تحديثه أغسطس 2022م.

ويدعم النموذج استخراج المباني والكتل العمانية باستخدام التعلم العميق من الصور الفضائية بدقة من 0-10 سم، ويحقق النموذج مقياس دقة Intersecion Over Union (IoU) يبلغ 1.41، ويتم على خوارزمية Mask R-CNN وقد كشفت الدراسة أن استخدام النموذج فعال في استخراج

<table>
<thead>
<tr>
<th>Images</th>
<th>Accuracy</th>
<th>Dice</th>
<th>F1Score</th>
<th>Index</th>
<th>IoU</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzouhour_prediction</td>
<td>0.807</td>
<td>0.807</td>
<td>0.408</td>
<td>0.256</td>
<td>0.525</td>
<td>0.426</td>
<td>0.392</td>
</tr>
<tr>
<td>Dirah_prediction</td>
<td>0.953</td>
<td>0.953</td>
<td>0.668</td>
<td>0.501</td>
<td>0.726</td>
<td>0.615</td>
<td>0.73</td>
</tr>
<tr>
<td>huttain_prediction</td>
<td>0.941</td>
<td>0.941</td>
<td>0.759</td>
<td>0.612</td>
<td>0.773</td>
<td>0.787</td>
<td>0.734</td>
</tr>
<tr>
<td>Alnahdah_prediction</td>
<td>0.949</td>
<td>0.949</td>
<td>0.819</td>
<td>0.693</td>
<td>0.818</td>
<td>0.829</td>
<td>0.809</td>
</tr>
</tbody>
</table>
พระเจ้าปทูสิทธิ์ เป็นผู้ทรงคุณค่าในธรรมชาติที่ให้ความเป็นมาของตระกูลมนุษย์

ที่มา

3. مرجع إلى مسيرة الركاب.

Chapter 1

1. مراجعة العربية

Chapter 2

1. مراجعة الأجنبية

